The possibility of measuring the use of big data in the general policy cycle and policy areas

Document Type : Research Paper

Authors

1 Assistant Professor, Department of Management, Faculty of Management and Military Sciences, Imam Ali University, Tehran

2 Assistant Professor, Department of Management, Faculty of Command and Management, Imam Ali University (AS), Tehran, Iran

3 Student of PHD in science and Research university

4 Associate Professor, PNU

Abstract

In the last two decades, a term called electronic government was introduced, but today we are talking about smart government, which is based on data and information. With the emergence of phenomena called data and its techniques, it is possible to collect and analyze data related to all kinds of policies in order to produce knowledge in each of the policy-making methods. Based on this, the current research was conducted with the aim of evaluating and investigating the impact of using macro in the general policy cycle and policy areas in Iran. For this purpose, quantitative fuzzy Delphi method was used The statistical population of the research is academic experts and managers and specialists in the policy field and the sample size is 17 people, which was used for sampling by non-random and targeted snowball method. In order to collect data, two questionnaires related to the feasibility of using big data in 6 stages of the policy data cycle and 16 policy areas were used. The results of the data analysis indicate that in the framework of the Islamic Republic of Iran's policy making, the use of big data in the general policy cycle is more possible in problem solving and agenda setting. Also, based on the level of preparation of each field in Iran's native conditions, it is more possible to use big data in the fields of defense and security policy, public transportation, health and safety, housing and urban development, land preparation and tax system.

Keywords


  1.  

    منابع

    الف- فارسی

    1. اسفندیاری، محسن، موسی خانی، مرتضی. (1401). طراحی مدل مدیریت دانش رصد اطلاعات شهری در شهرهای هوشمند. مطالعات بین‌ رشته‌ای دانش راهبردی, (46)12: 31-60
    2. اسمعیلی‌ گیوی، محمدرضا .(1400). کارکردهای کلان داده در خط مشی‌‏گذاری یکپارچه برای مدیریت ‏بحران، تأملی بر ‏‏چالش‏ها و فرصت‌های جهان اسلام. دومین همایش ملی حکمرانی اسلامی، تهران.
    3. پریسا موسوی ، رضا یوسفی زنوز ، اکبر حسن پور. (1394). شناسایی ریسک های امنیت اطلاعات سازمانی با استفاده از روش دلفی فازی در صنعت بانکداری. مدیریت فناوری اطلاعات. شماره 22. ۱۶۳ -۱۸۴.
    4. راهداری علیرضا، نصر مصطفی. چالش‌های اتاق فکر در ایران. فصلنامه علمی - پژوهشی فرایند مدیریت و توسعه . ۱۳۹۶; ۳۰ (۲) :۲۳-۵۴.
    5. رضائیان دلوئی، محمدرضا کازرونی، حنیف. (1402). ارزیابی فناوری: رویکردها، چالش‌ها، و حوزه‌ها.مطالعات بین‌ رشته‌ای دانش راهبردی،(50)13. 111-87.
    6. سعادت، وحید و حقیقی، محمد علی.(1394). کلان داده، پیشران نوآوری در خط­مشی­گذاری دولتی. نخستین کنفرانس ملی مدیریت دولتی ایران. دانشکده مدیریت دانشگاه تهران.
    7. سیف الدین اصل، امیرعلی؛ ثقفی، فاطمه و ذوالفقارزاده، محمدمهدی.(1395). استخراج شاخص های رکلیدی توسعه پژوهش با روش دلفی فازی ایشیکاوا برای بخش بهداشت و درمان.فصلنامه رهبرد: 81 (25). 5-26.
    8. علی زاده، ابراهیم، وکیلی فرد، حمیدرضا و حمیدیان، محسن(1400). بررسی عوامل خرد و کلان خط مشی های اقتصادی موثر بر عملکرد مالی شرکت ها. خط مشی گذاری عمومی در مدیریت، دوره 12، شماره 3، 179-163.
    9. محمدی فاتح، اصغر و ابراهیمی، سید عباس .(1399). شناسایی و رتبه­بندی فناوری­های اطلاعاتی نوظهور در بخش دفاعی- نظامی. فصلنامه آینده پژوهی دفاعی. دوره 5، شماره 17، تابستان 1399، صفحه 7-171
    10. میرسپاسی، ناصر؛ طلوعی اشلقی، عباس؛ معمارزاده، غلامرضا؛ پیدایی، میرمهرداد. (1389). طراحی مدل تعالی منابع انسانی در سازمانهای دولتی ایران با استفاده از تکنیک دلفی فازی. آینده پژوهی مدیریت, 21(شماره 4(پیاپی 87)), 1-22.

    ب- انگلیسی

     

    1. Alfaro, C, Javier C-Mo, Javier G, Javier M., and Felipe, O.(2013). “A Multi-Stage Method for Content Classification and Opinion Mining on Weblog Comments.” Annals of Operations Research, September, 1–17. doi:10.1007/s10479-013-1449-6.
    2. Athey, S.(2017). Beyond prediction: using big data for policy problems, Science ,Vol 355, Issue 6324,03 February 2017-PP 483–485
    3. Boyd, D., & Crawford, K. (2012). Critical questions for big data. Information, Communication and Society, 15(5).662–679.
    4. ‘Chen, Y. & Hsieh, T. (2014). Big Data for Digital Government: Opportunities, Challenges, and Strategies. International Journal of Public Administration in the Digital Age, 1 (1), January-March: 1-14.
    5. Cheng, C.H. and Lin, Y., 2002. Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation. European journal of operational research, 142(1), pp.174-186.
    6. Chinnaswamy,A., Papa,A., Dezi,L. & Mattiacci,A. (2018).Big data visualisation, geographic information systems and decision making in healthcare management, Management Decision, doi.org/10.1108/MD-07-2018-0835
    7. De Vries, W. (2018). POTENTIAL OF BIG DATA FOR PRO-ACTIVE PARTICIPATORY LAND USE PLANNING. Geoplanning Journal of Geomatics and Planning.5 (2). DOI: 10.14710/geoplanning.5.2.205-214.
    8. Hajikhani,A and Hajikhani, A.(2021).Research themes in big data analytics for policymaking: Insights from a mixed-methods systematic literature review. Journal of policy and internet, org/10.1002/poi3.258
    9. Harris, Shane. 2015. “The Social Laboratory.” Foreign Policy. Accessed July 22. https://foreignpolicy.com/2014/07/29/the-social-laboratory
    10. Höchtl,J, Parycek,P. & Schöllhammer,R .(2015): Big Data in the Policy Cycle: Policy Decision Making in the Digital Era, Journal of Organizational Computing and Electronic Commerce, DOI: 1080/10919392.2015.1125187
    11. Janssen, M., Matheus, R., & Zuiderwijk, A. (2015). Big and open linked data to create smart cities and citizens: Insights from smart energy and mobility cases. International Conference on Electronic Government. DOI: 1007/978-3-319-22479-4_6.
    12. Jiang, H.; Shao, Q.; Liou, J.J.; Shao, T.; Shi, X. (2019).improving the sustainability of open government data. Sustainability 2019, 11, 2388.
    13. Kim, E.S., Choi, Y.& Byun, J.(2020). Big Data Analytics in Government: Improving Decision Making for R&D Investment in Korean SMEs. Sustainability2020, 12, 202doi.org/10.3390/su12010202
    14. Klievink, B., Romijn, B.-J., Cunningham, S., & de Bruijn, H. (2017). Big data in the public sector: Uncertainties and Information Systems Frontiers, 19(2), 267-283. doi: 10.1007/s10796-016-9686-2.
    15. Li,S. & et al.(2016). Geospatial Big Data Handling Theory and Methods: A Review and Research Challenges. arxiv.org.
    16. Lim,N., Bruce R. O. and , Hall,K.C.(2019). Leveraging Big Data Analytics to Improve Military Recruiting. Published by the RAND Corporation, Santa Monica, Calif.
    17. Martínez-Noya, A. and García-Canal, E., 2011. Technological capabilities and the decision to outsource/outsource offshore R&D services. International Business Review, 20(3), pp.264-277.
    18. Matheus, R., Janssen, M., & Maheshwari, D. (2018). Data science empowering the public: Data-driven dashboards for transparent and accountable decision-making in smart cities. Government Information Quarterly. doi.org/10.1016/j.giq.2018.01.006.
    19. McNeely,L., and Hahm,J.O. .(2015). The Big (Data) Bang: Policy, Prospects, and challenges. Review of Policy Research, Vol 31, N 4 (2014). doi.org/10.1111/ropr.12082.
    20. Mehmood, H., & Gilman, E., & Cortés, M, & Kostakos, P. (2019). Implementing Big Data Lake for Heterogeneous Data Sources. IEEE 35th International Conference on Data Engineering Workshops. DOI: 10.1109/ICDEW.2019.00-37
    21. Mergel, I., Rethemeyer, R. & Isett, K. (2016). Big Data in Public Affairs. Public Administration Review. 76(6). DOI: 10.1111/puar.12625
    22. Mousavi, P., Yousefizenouz, R., Hasanpoor, A. (2015). Identifying Organizational Information Security Risks Using Fuzzy Delphi. Journal of Information Technology Management, 7(1), 163-184
    23. Müller,S.(2017). Big Data Analytics for Public Administration. Available at it-novum.com
    24. Oussous, A., Benjelloun, F-Z., Lahcen, A.A. and Belfkih, S. (2017). Big Data Technologies: A Survey, Journal of King Saud University - Computer and Information Sciences, doi: http://dx.doi.org/ 10.1016/j.jksuci.2017.06.001
    25. Rahmanto,F..  Pribadi,U. and  Priyanto,A.(2021). Big Data: What are the Implications for Public Sector Policy in Society 5.0 Era?. IOP Conf. Ser.: Earth Environ. Sci.717 012009
    26. Rodríguez, P., Palomino. And Mondaca, J. (2017).Using Big Data and its Analytical Techniques for Public Policy Design and Implementation in Latin America and the Caribbean. Discussion paper. Inter-American Development Bank.
    27. Shi,J., Ai,X. and Cao,Z. (2017). Can big data improve public policy analysis? In Proceedings of the 18th International Digital Government Research Conference on Digital Government Research, Staten Island, NY, USA, June 2017 (dg.o 2017), 10 pages. DOI: 10.1145/3085228.3085319
    28. Simon, Phil. (2014). “Potholes and Big Data: Crowdsourcing Our Way to Better Government.” March 25. http://www.wired.com/2014/03/potholes-big-data-crowdsourcing-waybetter- government/.
    29. Studinka, J., & Guenduez, A. (2018). The Use of Big Data in the Public Policy Process - Paving the Way for Evidence-Based Governance.
    30. Thomas,A. and Chopra,M.(2020). On How Big Data Revolutionizes Knowledge Management in Digital Transformation in Business and Society. Theory and Cases. Nature Switzerland AG 2020
    31. Wan Lee,J.(2020). Big Data Strategies for Government, Society and Policy-Making. Journal of Asian Finance Economics and Business7(7):475-487. DOI: 13106/jafeb.2020.vol7.no7.475
    32. World Bank group. (2017). Big data in action for government. Available at: documents.worldbank.org.